Calculus III, MTH 203, Fall 2012, 1–1

MTH 203, Calculus III, Quiz one

Ayman Badawi

QUESTION 1. a) Find a vector in 2D, say v, where |v| = 3.4 and it is perpendicular to the vector w = -3i + 4j.

QUESTION 2. Given $q_1 = (1, 1, 1)$, $q_2 = (-1, 1, 1)$, $q_3 = (0, 1, 2)$ are three points in 3D. a) Is there a unique plane containing q_1, q_2, q_3 ? Explain

b) If the answer is yes for part (a), then find the equation of the plane.

QUESTION 3. Given (1, 1, 1) lies on the line L that is perpendicular to the plane -2x + y + z = -7. Find the parametric equations of L. Since L intersects the given plane in one point say Q, find Q.

Faculty information

MTH 203, Calculus III, Quiz two

Ayman Badawi

QUESTION 1. (Circle the correct answer)

(i) Given V_1 and V_2 are vectors having the same initial point where $V_1 = 2i - 2j + k$, $V_2 = i + j - 3k$. Then $|proj_{V_1}V_2| =$

a) $\frac{-3}{9}$ b) $\frac{3}{9}$ c)1 d) None

(ii) Let V_1 , V_2 as in the previous question. Then $proj_{V_1}V_2 =$ a) -2i + 2j - k b) $\frac{2}{3}i - \frac{2}{3}j + \frac{1}{3}k$ c) $-\frac{2}{3}i + \frac{2}{3}j - \frac{1}{3}k$ d)None

-. ID -

- (iii) One of the following vectors lies in the plane 2x + y + z = 12a) < 1, 0, 10 > b) 2i + j + k c) -i + 2k d) <-2, 0, -4>
- (iv) One of the following is a standard form of the plane 3x 2y + 5z = 30 is a) 3x - 2y + 5z - 20 = 0 b) 3x - 2(y - 10) + 5(z - 10) = 0 c) 3(x - 10) - 2y + 5(z - 6) = 0 d) None
- (v) One of the following planes is perpendicular to the plane 3x y + z = 1a) -2x + 6z = 30 b) 6x - 2y + 2z = 0 c) -x + 3y = 1 d) none
- (vi) One of the following lines is parallel to the plane x + y + z = 10a) x = 2t, y = t, z = 1 - 3t b) bx = 2t, y = 4 + 6t, z = 6 - 8t c) x = 2t, y = t, z = 4 - 2t d) none
- (vii) Given 2x 1 = y + 4 = -z + 5 are the symmetric equations of a line in 3D. Parametric equations of the line can be :

a) y = t, x = t + 5, z = 1 - t b) x = t, y = 2t - 5, z = 6 - 2t c) x = 2t - 1, y = t + 4, z = -t + 5 d)None

(viii) Given the parametric equations of two lines: $L_1: x = 1 + t, y = 3 + 2t, Z = 4 - t$ and $L_2: x = 1 - s, y = 5 + 2s, z = 4 - s$. Then

a) L_1 is parallel to L_2 b) L_1 is the same line as L_2 c) L_1 and L_2 are screw lines d) L_1 and L_2 are interesting lines.

- (ix) Let V_1, V_2 be vectors in 3D having the same initial point. Given $V_1 \times V_2 = \sqrt{2}i + j + k$, the angle between V_1 and $V_2 > 90$, and $|V_1| = |V_2| = 2$. Then $V_1 \cdot V_2 = \sqrt{2}i + j + k$.
 - a) -2 b) -4 c) $-\sqrt{3}$ d) $-2\sqrt{3}$ e) Cannot be determined.
- (x) Given the two planes x + y + z = 4 and -x y = 2 interest in a line L. Parametric equation of L can be :
- a) x = -t, y = 2+t, z = 2 b)x = t, y = 2-t, z = 2 c) x = 2t, y = -2t, z = 4 d)x = t, y = -2-t, z = 6 e)None

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawiQaus.edu, www.ayman-badawi.com

Name-

–. ID –

Calculus III, MTH 203, Fall 2012, 1-1

Name-

MTH 203, Calculus III, Quiz Three

Ayman Badawi

QUESTION 1. (Circle the correct answer)

- (i) Given $Q = (\sqrt{8}, 1)$ is not on the line $L : y = \sqrt{8}x + 5$. The distance between Q and the line L is : a) 3 b) 2 c) 2/3 d)4
- (ii) Given Q = (0, 2, -2) is not on the line L : x = t, y = 2 + 2t, z = 2 2t. The distance between Q and L is a) $\sqrt{5}/9$ b) $\sqrt{5}/3$ c) $2\sqrt{5}$ d) $4\sqrt{5}/3$
- (iii) An equation of the plane where each point in the plane is equidistant from the two points Q₁ = (1,3,0) and Q₂ = (3,1,2)
 a)-2x + 2y 2z = -2 b) 2x 2y + 2z = -4 c)x y + z = 3 d) x y + z = 4
- (iv) Given P₁ := √6x 3y + 7z = 0 and P₂ : -2√6 + 6y 14z = -64 are non-intersecting planes. Distance between P₁ and P₂ is
 a) 4 b) 8 c)1 d)2
- (v) Let V be a vector where $V = \sqrt{11}, -3, 4 >$. Then V makes an angle with the positive x-axis equals to a) 30 b) 120 c) 150 d) 60
- (vi) Given $Q_1 = (1, -5)$, $Q_2 = (4, -6)$, $Q_3 = (2, -8)$ are the vertices of a triangle in 2D. The area of the triangle is a) 5 b) 4 c) 8 d) 5
- (vii) Given two lines L₁: x = 0.5t, y = 2 + t, z = -2 t and L₂: x = s, y = 2 + 2s, z = 2 2s where L₁ and L₂ are non-intersecting PARALLEL lines. The distance between L₁ and L₂ is
 a) 2√5 b) √5/3 c) 4√5/3 d) Cannot be determined
- (viii) Given $v_1 = 2i + j 6k$, $v_2 = 4i + j$, $v_3 = -i + 3j$ (all having the same initial point in 3D) form a parallel-piped object in 3D. The volume of the object is
 - a) 13 b)66 c) 78 d)11

Faculty information

MTH 203, Calculus III, Quiz FIVE

Ayman Badawi

QUESTION 1. (Circle the correct answer)

- (i) Let r(t) = < 2, sin(2t), cos(2t). The Unit normal vector at $t = \pi/8$ is a) $< 0, \sqrt{2}/2, -\sqrt{2}/2 >$ b) $< 0, -\sqrt{2}/2, -\sqrt{2}/2 >$ c) $< 0, -\sqrt{2}/2, \sqrt{2}/2 >$
- (ii) Let r(t) = < 4t, 3t, 5 >. Then the arc-length of r(t) when t is between 1 and 6
 a) 25 b)30 c) 125 d) 150
- (iii) Let $r(t) = \sqrt{16 t^2}$, $\sqrt{t 1}$, $\frac{1}{\sqrt{3 t}}$ >. The domain of r(t) is a) $(-4, 4) \setminus \{3\}$ b) [1, 3) c) $(-\infty, 4) \setminus \{3\}$ d) $[1, \infty) \setminus \{3\}$
- (iv) Given $r'(t) = \langle 6t(1+t^2)^2, \frac{-e^t}{2-e^t}, 2e^{2t} \rangle$ and $r(0) = \langle 4, 5, -2 \rangle$. Then r(t)a) $\langle (1+t^2)^3 + 3, \ln|2-e^t| + 5, e^{2t} - 3 \rangle$ b) $\langle (1+t^2)^3, \ln|2-e^3| + 4, e^{2t} - 2 \rangle$ c) $\langle 2(1+t^2)^3 + 2, -\ln|2-e^t| + 5, 2e^{2t} - 4 \rangle$
- (v) The arc-length of $r(t) = \langle 2sin(t), \sqrt{2}cos(t), \sqrt{2}cos(t) + 1 \rangle$ when t is between 0 and $\pi/2$ is a) 2π b) π c) $\pi/2$ d) $\sqrt{2}\pi/2$

Faculty information

Calculus III, MTH 203, Fall 2012, 1–1

MTH 203, Calculus III, Quiz Six

Ayman Badawi

QUESTION 1. (i) Let $f(x,y) = 2x^2 + e^y + yx$. Find $D_u(1,0)$ in the direction of v = 3i + 4j. What is the maximal value of $D_u(1,0)$? and in which direction does the max of $D_u(1,0)$ occur?

(ii) Find equations for the tangent plane and the normal line to the surface $e^z + x^2y + y = 3$ at (1, 1, 0)

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

Calculus III, MTH 203, Fall 2012, 1-1

MTH 203, Calculus III, Quiz SEVEN

Ayman Badawi

QUESTION 1. (i) Let $D = \{(x, y) | x^2 + y^2 \le 9$ where $x, y \ge 0\}$ (i.e., D is a quarter of a circle of radius 3 in the first quadrant of the xy-plane). Find the volume of the solid object that is determined by $f(x, y) = x^2 y$ over D

(ii) Determine the surface area of the solid object that is determined by $f(x, y) = x^3 + 2y$ over the region D in the xy-plane that is bounded by the x - axis and $y = x^3$.

Faculty information