MTH 203, Calculus III, Quiz one

Ayman Badawi

QUESTION 1. a) Find a vector in 2D, say v, where $|v|=3.4$ and it is perpendicular to the vector $w=-3 i+4 j$.

QUESTION 2. Given $q_{1}=(1,1,1), q_{2}=(-1,1,1), q_{3}=(0,1,2)$ are three points in 3D.
a) Is there a unique plane containing q_{1}, q_{2}, q_{3} ? Explain
b) If the answer is yes for part (a), then find the equation of the plane.

QUESTION 3. Given $(1,1,1)$ lies on the line L that is perpendicular to the plane $-2 x+y+z=-7$. Find the parametric equations of L. Since L intersects the given plane in one point say Q, find Q.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 203, Calculus III, Quiz two

Ayman Badawi

QUESTION 1. (Circle the correct answer)

(i) Given V_{1} and V_{2} are vectors having the same initial point where $V_{1}=2 i-2 j+k, V_{2}=i+j-3 k$. Then $\left|\operatorname{proj}_{V_{1}} V_{2}\right|=$
a) $\frac{-3}{9}$
b) $\frac{3}{9}$
c) 1
d) None
(ii) Let V_{1}, V_{2} as in the previous question. Then $\operatorname{proj}_{V_{1}} V_{2}=$
a) $-2 i+2 j-k$
b) $\frac{2}{3} i-\frac{2}{3} j+\frac{1}{3} k$
c) $-\frac{2}{3} i+\frac{2}{3} j-\frac{1}{3} k \quad$ d)None
(iii) One of the following vectors lies in the plane $2 x+y+z=12$
a) $\langle 1,0,10\rangle$
b) $2 \mathrm{i}+\mathrm{j}+\mathrm{k}$
c) $-\mathrm{i}+2 \mathrm{k}$
d) $<-2,0,-4>$
(iv) One of the following is a standard form of the plane $3 x-2 y+5 z=30$ is
a) $3 x-2 y+5 z-20=0$
b) $3 x-2(y-10)+5(z-10)=0$
c) $3(x-10)-2 y+5(z-6)=0$
d) None
(v) One of the following planes is perpendicular to the plane $3 x-y+z=1$
a) $-2 x+6 z=30$
b) $6 x-2 y+2 z=0$
c) $-x+3 y=1$
d) none
(vi) One of the following lines is parallel to the plane $x+y+z=10$
a) $x=2 t, y=t, z=1-3 t$
b) $\mathrm{b} x=2 t, y=4+6 t, z=6-8 t$
c) $x=2 t, y=t, z=4-2 t$
d) none
(vii) Given $2 x-1=y+4=-z+5$ are the symmetric equations of a line in $3 D$. Parametric equations of the line can be :
a) $y=t, x=t+5, z=1-t$
b) $x=t, y=2 t-5, z=6-2 t$
c) $x=2 t-1, y=t+4, z=-t+5 \quad$ d)None
(viii) Given the parametric equations of two lines: $L_{1}: x=1+t, y=3+2 t, Z=4-t$ and $L_{2}: x=1-s, y=$ $5+2 s, z=4-s$. Then
a) L_{1} is parallel to L_{2}
b) L_{1} is the same line as L_{2}
c) L_{1} and L_{2} are screw lines
d) L_{1} and L_{2} are interesting lines.
(ix) Let V_{1}, V_{2} be vectors in 3D having the same initial point. Given $V_{1} \times V_{2}=\sqrt{2} i+j+k$, the angle between V_{1} and $V_{2}>90$, and $\left|V_{1}\right|=\left|V_{2}\right|=2$. Then $V_{1} \cdot V_{2}=$
a) -2
b) -4
c) $-\sqrt{3}$
d) $-2 \sqrt{3}$
e) Cannot be determined.
(x) Given the two planes $x+y+z=4$ and $-x-y=2$ interest in a line L. Parametric equation of L can be :
a) $x=-t, y=2+t, z=2$
b) $x=t, y=2-t, z=2$
c) $x=2 t, y=-2 t, z=4$
d) $x=t, y=-2-t, z=6$
e)None

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
\qquad

MTH 203, Calculus III, Quiz Three

Ayman Badawi

QUESTION 1. (Circle the correct answer)

(i) Given $Q=(\sqrt{8}, 1)$ is not on the line $L: y=\sqrt{8} x+5$. The distance between Q and the line L is :
a) 3
b) 2
c) $2 / 3$
d) 4
(ii) Given $Q=(0,2,-2)$ is not on the line $L: x=t, y=2+2 t, z=2-2 t$. The distance between Q and L is
a) $\sqrt{5} / 9$
b) $\sqrt{5} / 3$
c) $2 \sqrt{5}$
d) $4 \sqrt{5} / 3$
(iii) An equation of the plane where each point in the plane is equidistant from the two points $Q_{1}=(1,3,0)$ and $Q_{2}=(3,1,2)$
a) $-2 x+2 y-2 z=-2$
b) $2 x-2 y+2 z=-4$
c) $x-y+z=3$
d) $x-y+z=4$
(iv) Given $P_{1}:=\sqrt{6} x-3 y+7 z=0$ and $P_{2}:-2 \sqrt{6}+6 y-14 z=-64$ are non-intersecting planes. Distance between P_{1} and P_{2} is
a) 4
b) 8
c) 1
d) 2
(v) Let V be a vector where $V=<\sqrt{11},-3,4>$. Then V makes an angle with the positive x-axis equals to
a) 30
b) 120
c) 150
d) 60
(vi) Given $Q_{1}=(1,-5), Q_{2}=(4,-6), Q_{3}=(2,-8)$ are the vertices of a triangle in $2 D$. The area of the triangle is
a) 5
b) 4
c) 8
d) 5
(vii) Given two lines $L_{1}: x=0.5 t, y=2+t, z=-2-t$ and $L_{2}: x=s, y=2+2 s, z=2-2 s$ where L_{1} and L_{2} are non-intersecting PARALLEL lines. The distance between L_{1} and L_{2} is
a) $2 \sqrt{5}$
b) $\sqrt{5} / 3$
c) $4 \sqrt{5} / 3$
d) Cannot be determined
(viii) Given $v_{1}=2 i+j-6 k, v_{2}=4 i+j, v_{3}=-i+3 j$ (all having the same initial point in 3D) form a parallel-piped object in 3D. The volume of the object is
a) 13
b) 66
c) 78
d) 11

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 203, Calculus III, Quiz FIVE

Ayman Badawi

QUESTION 1. (Circle the correct answer)

(i) Let $r(t)=<2, \sin (2 t), \cos (2 t)$. The Unit normal vector at $t=\pi / 8$ is
a) $<0, \sqrt{2} / 2,-\sqrt{2} / 2>$
b) $\langle 0,-\sqrt{2} / 2,-\sqrt{2} / 2\rangle$
c) $<0,-\sqrt{2} / 2, \sqrt{2} / 2\rangle$
(ii) Let $r(t)=<4 t, 3 t, 5>$. Then the arc-length of $r(t)$ when t is between 1 and 6
a) 25
b) 30
c) 125
d) 150
(iii) Let $r(t)=<\sqrt{16-t^{2}}, \sqrt{t-1}, \frac{1}{\sqrt{3-t}}>$. The domain of $r(t)$ is
a) $(-4,4) \backslash\{3\}$
b) $[1,3)$
c) $(-\infty, 4) \backslash\{3\}$
d) $[1, \infty) \backslash\{3\}$
(iv) Given $r^{\prime}(t)=<6 t\left(1+t^{2}\right)^{2}$, $\frac{-e^{t}}{2-e^{t}}, 2 e^{2 t}>$ and $r(0)=<4,5,-2>$. Then $r(t)$
a) $<\left(1+t^{2}\right)^{3}+3, \ln \left|2-e^{t}\right|+5, e^{2 t}-3>$
b) $<\left(1+t^{2}\right)^{3}, \ln \left|2-e^{3}\right|+4, e^{2 t}-2>$
c) $<2\left(1+t^{2}\right)^{3}+2,-\ln \left|2-e^{t}\right|+5,2 e^{2 t}-4>$
(v) The arc-length of $r(t)=<2 \sin (t), \sqrt{2} \cos (t), \sqrt{2} \cos (t)+1>$ when t is between 0 and $\pi / 2$ is
a) 2π
b) π
c) $\pi / 2$
d) $\sqrt{2} \pi / 2$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
\qquad

MTH 203, Calculus III, Quiz Six

Ayman Badawi

QUESTION 1. (i) Let $f(x, y)=2 x^{2}+e^{y}+y x$. Find $D_{u}(1,0)$ in the direction of $v=3 i+4 j$. What is the maximal value of $D_{u}(1,0)$? and in which direction does the max of $D_{u}(1,0)$ occur?
(ii) Find equations for the tangent plane and the normal line to the surface $e^{z}+x^{2} y+y=3$ at $(1,1,0)$

Faculty information

\qquad

MTH 203, Calculus III, Quiz SEVEN

Ayman Badawi

QUESTION 1. (i) Let $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right.$ where $\left.x, y \geq 0\right\}$ (i.e., D is a quarter of a circle of radius 3 in the first quadrant of the xy-plane). Find the volume of the solid object that is determined by $f(x, y)=x^{2} y$ over D
(ii) Determine the surface area of the solid object that is determined by $f(x, y)=x^{3}+2 y$ over the region D in the xy-plane that is bounded by the $x-a x i s$ and $y=x^{3}$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

